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Effective elastic moduli of porous solids 
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The principles of continuum mechanics can be extended to porous solids only if the effective 
moduli are known. Although the effective bulk modulus has already been determined by 
approximating the geometry of a porous solid to be a hollow sphere, bounds could only be 
established for the other moduli. This problem of indeterminacy of the moduli is solved in this 
study using a particular model from the variation of the effective Poisson's ratio. In addition to 
this, the results are extended for the hollow sphere to real geometry by introducing a porosity- 
dependent factor. These results are compared with experimental data and the agreement is 
found to be good-. As the effective Poisson's ratio cannot be determined accurately using 
experiments, the derived equation is verified using finite element analysis. 

1. I n t r o d u c t i o n  
Porous solids find many engineering applications. 
These range from acoustic absorption to heat shields 
in re-entry vehicles. Even in nature many of the solids 
are porous making them optimally designed for the 
load they carry and the environment in which they 
exist. 

As porous solids by their very nature are hetero- 
geneous, analytical procedures available for treating 
homogeneous solids as continuum materials are not 
di~rectly, applicable. However, if pores are distributed 
with respect to their size, shape and spatial distri- 
bution in a statistically random fashion, it is possible 
to treat the porous solid as a continuum material 
taking into account the various effective properties 
which depend on the properties of the corresponding 
dense solid and the porosity. 

Mechanical properties of two-phase solids have 
been studied both theoretically and experimentally. 
Most of these [1-7], however, involved studies on 
two-phase materials with each phase having different 
elastic moduli. Dewey [1] and Paul [2] established the 
elastic constants of two-phase materials where one of 
the phases was long fibres distributed in a matrix. 
Eshelby [3] and later Hashin [4] and Hashin and 
Shtrikman [5] studied the elastic properties where the 
second phase is distributed in a statistically random 
fashion. Hill [6] and Budiansky [7] applied the con- 
cepts of self consistency of deformation of composite 
materials for determining the elastic constants. 
Among the many authors, only Mackenzie [8] studied 
the elastic properties, exclusively of porous solids, 
using a hollow sphere model. 

Even though many investigators determined the 
elastic moduli of porous solids by treating them as a 
particular case of two-phase solids, where one of the 
phases is a void, we believe that this temptation must 
be resisted for the following reason. Although the 

effective bulk modulus is determinable using statistical 
continuum theory, it is possible to establish only 
bounds for the effective shear modulus. The gap 
between the bounds increases with the difference in the 
elastic properties of the phases. Therefore these bonds 
for porous solids will have no meaning. The model 
used for such calculations, i.e. an assemblage of 
non-interacting spheres with concentric spherical 
inclusions, is also strictly not valid when the difference 
between the elastic properties of the phases is large. 
We shall prove this point later in this paper. 

In this paper we develop analytical procedures for 
determining the effective elastic constants of porous 
solids with pores distributed randomly. We begin this 
analysis with equations developed by Hashin and 
Shtrikman [4, 5] for multiphase materials. As the 
effective shear modulus is not determinable by this 
method, we shall use a variation of the effective 
Poisson's ratio as a parameter for determining the 
shear modulus. We shall compare the results of 
these calculations with the experimentally measured 
parameters. As the experimentally determined effec- 
tive Poisson's ratios are generally not accurate, we 
shall compare the results of the calculations with those 
determined in a study where a finite element analysis 
was carried out on a geometry with spherical voids 
distributed in a material matrix. 

2. Determinat ion of the effect ive bulk 
modulus 

The derivation begins with the following general 
equation given" by Hashin and Shtrikman [4, 5] 

G,~ = 3K* ~ (1) 

where U,, and ~ are volume averages of the hydrostatic 
stress and strain, respectively. We will first establish 
the effective bulk modulus of a hollow sphere and later 
extend it to multipore geometry. The averages are 
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Figure 1 Assemby of  ho l low spheres  represent ing  real geometry .  

calculated over the entire volume of the hollow sphere 
comprising both the void and the material phase. The 
stress and strain distributions in the material phase, 
which can be determined easily, are given in Appendix 
1. In the void the stress is zero but not the strain. The 
average volumetric strain in the void can be determined 
directly as the void shrinkage is known from the dis- 
placement at the inner surface of  the hollow sphere. 
Following the above procedure we obtain the effective 
bulk modulus as 

K* = K(1 - 0)/(1 + bkO ) (2) 

where bk = (1 + #)/[2(1 -- 2#)], Kand # are the bulk 

modulus and the Poisson's ratio of the corresponding 
dense material�9 Details of this derivation are given in 
Appendix 2. This is now extended to an assemblage of 
hollow spheres as shown in Fig. 1, in which each 
sphere, though different in diameter, has the same 
void fraction�9 This is similar to the procedure adopted 

by the earlier workers as well. However, they assumed 
that the pressure exerted on the surface of the sphere 
is the same as that exerted on the multipore geometry. 
This approximation may be acceptable in the case of 
two-phase materials where the moduli of the phases 
do not differ much, but in the case of porous solids 
there is a definite need to establish the correction 
factor and the procedure we adopted is given below. 

Let P~p be the pressure acting on the hollow sphere 
extracted from the multipore geometry and Pmp be the 
pressure acting on the multipore geometry itself. Pres- 
sure being zero in the pore volume, the average pres- 
sure in the material volume is Pmp/(1 -- 0) where 0 is 
the porosity. Therefore 

esp = rmp/(1 -- 0) (3) 

As the volume strains of both the hollow sphere and 
the assemblage are equal 

K*mp/N* = Pmp/P~p = (1 -- 0) (4) 

Combining Equations 2 and 4 we obtain 

K* = /q l  - 0)2/(1 + b~0) (5) 

(From here on, K*p will be denoted by K*). This 
equation satisfies all the limiting conditions of zero 
porosity and a totally porous solid. The variation of 
the effective bulk modulus with porosity, for a few 
typical values of the dense material Poisson's ratio, is 
given in Fig. 2. 

3. D e t e r m i n a t i o n  of  the  e f f e c t i v e  shear 
modulus  

Similar to Equation 1, the basic equation [4, 5] rep- 
resenting the effective shear modulus is expressed in 
the form 

S o = 2 G *  e!/ (6) 
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Figure 3 Variation of  the effective shear modulus  with porosity. G/G* = (1 - 0)2/(1 bgO) where bg = (11 - I9)/4 (1 + ). 

where S(/and ei/are volume averages of the deviatoric 
stress and strain, respectively. The derivation of the 
effective shear modulus is relatively more difficult than 
that of the effective bulk modulus. This is because the 
average deviatoric strain in the  void cannot be deter- 
mined directly as could be done in the case of the 
average volumetric strain. Therefore, the average 
deviatoric strain in the void essentially remains 
unknown in the derivation and requires an additional 
equation to resolve it; otherwise only bounds may be 
established for the effective shear modulus. To find 
this additional equation we propose a model for the 
variation of the effective Poisson's ratio with the 
porosity as follows. 

(a) For  a completely porous solid (0 = l) the effec- 
tive Poisson's ratio is a constant, independent of the 
material. (Let this constant be k). 

(b) In this case of the porous solids for which the 
Poisson's ratio at its fully dense state is k, the effective 
Poisson's ratio does not vary with porosity. 

With this model it becomes possible to determine 
the effective shear modulus of the hollow sphere in 
terms of shear modulus of the corresponding dense 
solid, the porosity and k. To extend this to multipore 
geometry the effective shear modulus is multiplied by 
the factor (1 - 0) derived in the previous section. 
Also, using the experimental results, we found k to be 
1/4. Finally, we find the effective shear modulus to be 

G* = G(1 - 0)2/(1 + bgO) (7) 

where b~ = (11 - 19#)1{4(1 + #)}, and G and # are 
the shear modulus and the Poisson's ratio of  the corre- 
sponding dense solid, respectively. The detailed deri- 
vation is provided in Appendix 3. This equation also 
satisfies all the limiting conditions like Equation 5. 
The variation of the effective shear modulus with 

porosity, for a few typical values of the corresponding 
dense material Poisson's ratio, is given in Fig. 3. 

4. Determinat ion of the ef fect ive 
Young's modulus and Poisson's ratio 

Determining the effective Young's modulus and the 
effective Poisson's ratio is only a matter of using the 
inter-relationships between different moduli, because 
the effective bulk and shear moduli have already been 
established. The effective Young's modulus is given by 

E* = E(1 - 0)2/(1 + boO) (8) 

where bo = 2 to 3 #. The effective Poisson's ratio is 

(1/4)(4/~ + 30 - 7#0) 
#* = (9) 

(1 + 20 - 3#0) 

where E and # are the Young's modulus and the 
Poisson's ratio of the corresponding dense material. 
The variations of the effective Young's modulus and 
the effective Poisson's ratio with porosity are shown 
in Figs 4 and 5. 

5. Experimental  val idation of the 
analysis 

A number of experimental results are available on the 
variation of effective elastic moduli with porosity. We 
chose the experimental results on porous MgO [9], 
MgAl203 [10] and Sm203 [11] because they represent a 
good variation in their dense material Poisson's ratios 
(the dense material Poisson's ratio of MgO is 0.18, 
that of MgA1203 is 0.268 and that of S m 2 0 3  is 0.324). 
The experimental results are plotted with the values 
calculated using the derived equations and are shown 
in Figs 6a to c. 

Dean and Lopez [12] compiled experimental data 
on various porous materials with porosity ranging 
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Figure 4 Var ia t ion  of  the effective Y o u n g ' s  modu lus  wi th  porosi ty .  E*/E = (l  - 0)2/(1 + b~O) where  be = 2 - 3. 

from zero to about 35%, in order to find the best form 
of empirical equation to fit the variation of the effec- 
tive moduli with porosity. They found a linear equation 
to be the most suitable one in this porosity range. 
In order to compare these results with our derived 
equations, we have also used linear approximation of 
the derived equation in the relevant porosity range. 
The agreement between the experimental results and 
the derived equations is excellent. 

Experimental validation of the effective Poisson's 
ratio is relatively difficult because of the inherent 
inaccuracy in determining #* through experimental 
values o r E *  and G*. However, some qualitative state- 
ments made on the variation of /~* with porosity 
support the derived equations. Manning et  al. [13] 
report a decrease in the effective Poisson's ratio of 
yttrium oxide, holmium oxide and erbium oxide with 
porosity. This, according to the derived equations is to 
be expected, because their dense material Poisson's 

ratios are above 0.25. Coble and Kingery [14] also 
make an interesting experimental observation that the 
effective Poisson's ratio of A1203 remains nearly con- 
stant at 0.25 with increasing porosity. This corrobor- 
ates the model proposed for the variation of the effec- 
tive Poisson's ratio with porosity in this analysis. 
Similarly, the experimental results of Saga and 
Scheriber [15] on MgO, which has a Poisson's ratio 
less than 0.25 in its fully dense state, show an increase 
in #* with porosity as expected. 

Another interesting validation of the effective 
Poisson's ratio could be made by comparing the 
results of the derived equations with those of a detailed 
finite element analysis done on a pore geometry. A 
finite element mesh was created with a set of con- 
centric circles as shown in Fig. 7. By assigning zero 
modulus to elements of a few circles, the desired level 
of porosity was incorporated in the geometry. We 
analysed three such variations with porosities of 0.17, 
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0.33 and 0.57. In each case a typical elastic longitudi- 
nal strain was imposed and the average lateral strain 
was computed for five different values of dense material 
Poisson's ratio. The results of this analysis are shown 
in Fig. 8 and an excellent agreement between the 
derived equations and the FEM results can be seen. 
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Figure 6 Validation of  the derived equation for the effective 
moduli using experimental data. (a) MgO, E = 3061 kbar 
(310GPa), G = I300kbar (131.7 GPa), /t = 0.18, ( - - - )  
average of Hashin and Shtrikman's bounds [5], (e)  experi- 
mental data [9], ( ) predicted variation. (b) MgA1203, 
E = 43.4 x 106 p.s.i. (299.2GPa), G = 17.2 x 106 p.s.i. 
(I18.6GPa), ,u = 0.268, (e)  experimental data [10], 
( ) predicted variation. (c) Sm203, E = 1450kpar 
(146.9GPa), G = 547.5kbar (55.47GPa), # = 0.3245, 
(e) experimental data [t 1], ( ) predicted variation. 

function of only the dense material Poisson's ratio. 
The effective Poisson's ratio is given by 

#* = (1/4)(4/~ + 30 - 7~0)/(1 + 20 - 3kt0) 

0 1 )  

z ~ Published experimental results on the variations of  
effective elastic moduli with porosity agree well with 
the derived equations. 

6 .  C o n c l u s i o n  
Equations have been derived for the effective elastic 
moduli and Poisson's ratio of  porous solids using the 
principle of  statistical continuum mechanics. All these 
moduli can be described by a general equation 

M *  = M 0  - 0)2/0 + bn, O) (10) 

where M* is the effective modulus, M the correspond- 
ing dense material modulus and 0 the porosity. The 
term bm depends on the concerned modulus and is a Figure 7 Master mesh for the finite element analysis. 
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Appendix 1. Stress-strain distribution 
in a th ick-wal led hol low sphere 
subjected to external pressure 

Consider  a hollow sphere of  uni form wall thickness 
(Fig. A1) with external and internal radii a and b, 
respectively. When  the sphere is subjected to a uniform 
external pressure,  P, the radial and tangential  stresses 
(at and a~) developed at a distance r f rom the centre of  
the sphere are given as 

ar = - P ( 1  - 0')/(1 - 0) (A1) 

~t = - P  (1 + 0'/2)/(1 - 0) (A2) 

where 0' = b3/r 3, and 0 = b~/a -~. The cor responding  

O = b3/a 3 O = b ~ / r  3 

Figure A 1 Single pore geometry, hollow sphere model. 

strains are 

er = - P  [(1 - 2#) - 0' (1 + ~t)]/[E(1 - 0)] 

(A3) 

et = - - P  [(1 -- 2F) -- (0'/2)(1 + kt)]/[E(1 -- 0)] 

(A4) 

where E and /~ are Young ' s  modulus  and Poisson's  
ratio of  the material ,  respectively. 

Appendix 2. Effective bulk modulus of 
the hol low sphere 

Effective bulk modulus  (K*) of  a mul t iphase  material  
is expressed as [4, 5] 

K* = ~,,/3~ (AS) 

where ~i-- and ei~ are averages of  the hydrosta t ic  com-  
ponents  of  the stress and strain. For  the hollow sphere 
model ,  the terms ~ii and e, can be expressed as, 

= (at + 2at)dV/Vo + fv,, (':rr + 2~176 (T i~i f v m 

(A6) 

= fv,, (er + 2e,)d V/Vo + fvp (er + 2e,)d V/Vo 

(A7) 

where V,, and Vp cor respond to volume of  the material  
and the void, respectively, and V0 is the total  volume. 
Using Equat ions  A1 to A4, each term in Equat ions  A6 
and A7 can be determined as follows 

fv,. (~' + 2at)dV/Fo = - 3P (A8) 

f~,~ (eT + 2<)dr/V0 = - 3 P ( 1  - 2#) / s  (A9) 

where P is the externally applied pressure, # is Poisson's  
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ratio of the material and E is Young's modulus. As the 
stress is zero inside the void 

f~ (a, + 2a,)dVIV o = 0 (A10) 

The second term of the right-hand side of Equation 
A7 can be written as 

[" (~, + 2e,)dV/V0 = 
J vr 

where 

fv~ [(e~ + 2st)dV/Vp] (Vp/V0) 

(All )  

fvp (e, + 2et)dV/V p = volume strain of the void 

= 3Ab/b (A12) 

where b is internal radius of the hollow sphere and 
Ab is the displacement at r = b under the external 
pressure, P. 

As the tangential strain s, = u/r, where u is the 
displacement at a distance r from the centre of the 
sphere 

A ~ / b  = ( t S t ) r  = b ( A 1 3 )  

Combining Equations AI 1 to A14 we obtain 

[vp (e, + 2e<)dVlV o = - 9 P 0 ( 1  - /2)f[2s - 0)] 

(A14) 

where 0 = Vp/Vo 
Finally, combining Equations A5 to A13, and also 

using the equation expressing K in terms of E and/2 we 
obtain 

K* = K(I - 0)t(1 + bkO) (A15) 

where K is bulk modulus of the material and bk = 
(1 - / 2 ) / [ 2 ( 1  - 2 /2 )1 .  

Equation A 15 can be derived more easily by simply 
dividing the overall volume strain (Aa/a) by the 
external pressure applied. But the above procedure 
has been provided in order to maintain continuity 
with the next section. 

A p p e n d i x  3. E f f e c t i v e  s h e a r  m o d u l u s  
Effective shear modulus (G*) of any multiphase 
material is expressed as [4, 5] 

G* = S!//2e;; (AI 6) 

where S;i and ~ are averages of the deviatoric com- 
ponents of the stress and strain, respectively. 

For the hollow sphere, S~/and ~ simplify to 

S r = o r - -  ( ( 7  r Jr-  2at)/3 

= (2/3)(a, -- or,) (A17) 

S t = o- t - -  ( o -  r - i  L 20-,)/3 

= - ( 1 / 3 ) ( o - , . -  ,:r[) (A18) 

7, = ~, - (~, + 2~,)/3 

= (2/3)(s~- st) (A19) 

e, = et - (er + 2et)/3 

= -(1/3)(er - e,) (120) 

Substituting Equations A17 to A20 in to Equation 
A 16 we get 

2G* = S/e, = SJe, = ((7 r - - O - t ) / ( ~  r - - S t )  

(A21) 

Let us consider the numerator of the right-hand side 
of Equation A21 separately 

- o, = fv,. ( a ~ -  a 0 d V / F  o O" r 

+ f,~ (a~ - ~r,)dF/Fo (122)  

where V m and Vp are the volumes of the material and 
the void, respectively, V0 is the total volume, er r and cry, 
from Equations A1 and A2, are substituted in the first 
term of the right-hand side of Equation A22. The 
second term, being an integral over the void volume, 
becomes zero. This results in 

O" r - -  O- t 

simplifying to 

I ~  2(1-3Pb3~ O)r 3 47zredr] + [43r---~2 ] 

- 3 P O  I n  0 
(123) Or - ~rt - 2 ( 1  - 0) 

Now considering the denominator of Equation A21 

e , -  st = f~,,, (~, - s , )dVlVo  + fvp (e, - e,)dVIVo 

(A24) 

s, and st are substituted from Equations A3 and A4 in 
the first term of the right-hand side of Equation A24. 
The second term being an unknown function, it is 
denoted as 0. Then 

- 3 P ( I  + /2)01n0 
C r - -  /3 t = Jr- qb (A25) 

2s - 0) , 

Substituting Equations A23 and A25 into Equation 
A21, and considering the relationship between E, G 
and/2 we get 

G3PO In 0 
G* = (126) 

3POlnO - 4G(I - 0)~ 

In Equation A26, q5 is an unknown function corre- 
sponding to the average of the shear strain of the void 
geometry which cannot be determined by normal 
procedures. Therefore, an additional independent 
equation is required to resolve O. This can be achieved 
by assuming a particular kind of variation of the 
effective Poisson's ratio as a function of porosity. 

The effective Poisson's ratio is given by the equation 

3K* - 2G* 
/2* - (A27) 

6K* + 2G* 

Substituting K* from Equation A15 and G* from 
Equation A26 into Equation A27 and also using the 
inter-relationships between K, G and/2 we get 

9PO In 0 
- ( 1  - 0 ) O  - 

8a(~ - o) 

I 2(/2* --/2) t9(1 _--_/2*)] (A28) 
• (l s  ~ 2/2") + (1 - 2~,*)j  
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Consider  a hypothetical  case where the porosi ty 
becomes unity (0 = 1) and the effective Poisson's  
ratio for this case is assumed to be independent  o f  the 
material and the value o f  it to be k for any value of  # 
and G. With this 

- 9 P ( 1  + k ) ( 1  - #)  
- ( l  - 0 ) ~  = 

80  (1 -- 2k)(1 + /~) 

(A29) 

Also consider a case where # -* k and #* -* k for any 
value o f  0 

9P  (02 In 0)(1 - k) 
- ( 1  - 0)qb = (A30) 

8G (1 - 0)(1 - 2k) 

The general function (I)(0, #) should satisfy both 
Equat ions  A29 and A30 and it is found to be 

9P (02 In 0)(1 + k)(1 - #) 
- ( 1  - 0 ) ,  = 

8G (1 - 0)(1 - 2k)(1 + #) 

(A31) . 

Finally, substituting qb from Equat ion  A31 into 
Equat ion A26 we obtain 

G(1 - O) 
G *  - 

(1 + bfi) 

where 
1 + 7 k -  5# + k #  

bg = 
2(1 - 2k)(1 + #) 

k was found to be, 1/4 from experimental results, 
F o r k  = 1/4, b~ = 11 - 19#/[4(1 + #)]. 
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